My research interests lie at the intersection of (continuous) optimization and machine learning. In particular, I am interested in optimization on Riemannian manifolds, online optimization and federated learning.
E-mail: roux@zib.de
Publications
* means equal contribution
-
SparseSwaps: Tractable LLM Pruning Mask Refinement at Scale
[arXiv]
M. Zimmer, C. Roux, M. Wagner, D. Hendrych, S. Pokutta -
A Free Lunch in LLM Compression: Revisiting Retraining after Pruning
[arXiv]
M. Wagner, C. Roux, M. Zimmer, S. Pokutta -
Don't Be Greedy, Just Relax! Pruning LLMs via Frank-Wolfe
[arXiv]
C. Roux*, M. Zimmer*, A. d’Aspremont, S. Pokutta -
Implicit Riemannian Optimism with Applications to Min-Max Problems
[ICML 2025]
[arXiv]
C. Roux*, D. Martínez-Rubio*, S. Pokutta -
Accelerated Methods for Riemannian Min-Max Optimization Ensuring Bounded Geometric Penalties
[AISTATS 2025]
[arXiv]
D. Martínez-Rubio*, C. Roux*, C. Criscitiello, S. Pokutta -
On the Byzantine-Resilience of Distillation-Based Federated Learning
[ICLR 2025]
[arXiv]
[summary]
C. Roux*, M. Zimmer*, S. Pokutta -
Convergence and Trade-Offs in Riemannian Gradient Descent and Riemannian Proximal Point
[ICML 2024]
[arXiv]
D. Martínez-Rubio*, C. Roux*, S. Pokutta -
Efficient Online-Bandit Strategies for Minimax Learning Problems
[arXiv]
C. Roux, E. Wirth, S. Pokutta, T. Kerdreux -
Linear Bandits on Uniformly Convex Sets
[JMLR]
[arXiv]
[summary]
T. Kerdreux, C. Roux, A. d’Aspremont, S. Pokutta